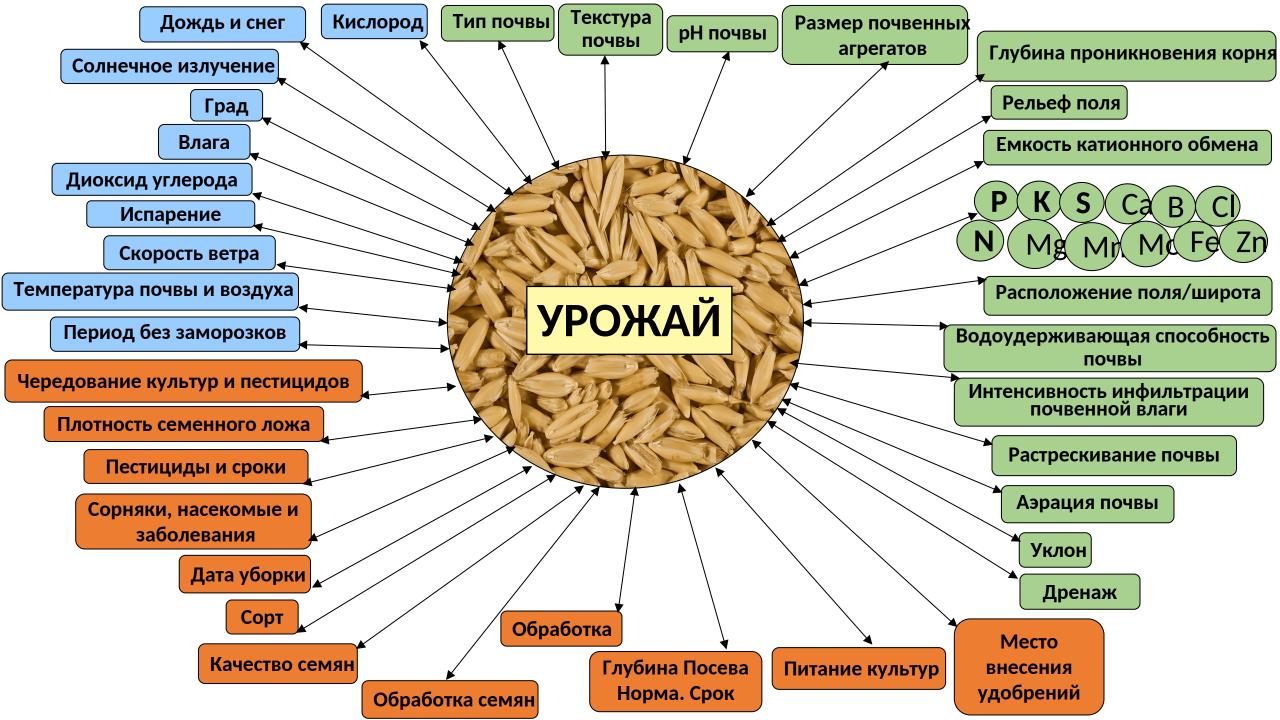


### ЗАКОН СОХРАНЕНИЯ МАССЫ ВЕЩЕСТВА


В 1748 г. Ломоносов сформулировал результаты своих опытов в виде закона: «Все перемены в натуре случающиеся, такого суть состояния, что, сколько чего у одного тела отнимется, столько присовокупится к другому».

На современный лад закон звучит так:

«Масса веществ, вступивших в реакцию, равна массе образовавшихся веществ» (1756г.).









#### PACTEHUE



### Нереализованный потенциал производства

### Всегда есть решение

Средняя урожайность культур, т/га

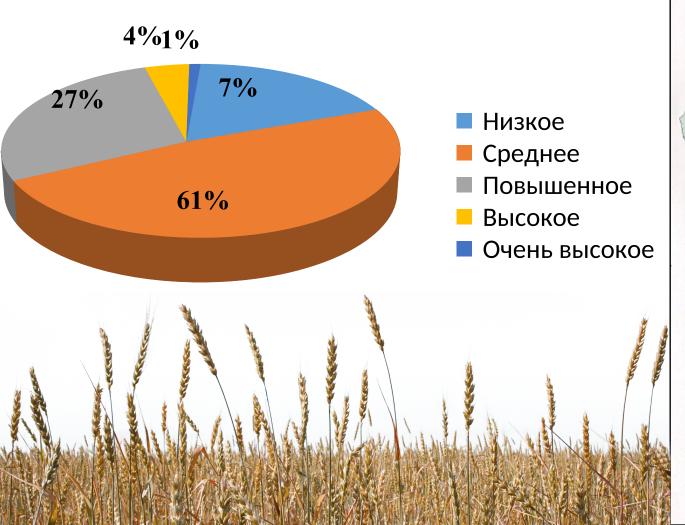
|                               | Франция         | Германия        | Россия          |
|-------------------------------|-----------------|-----------------|-----------------|
| Пшеница                       | 7,6             | 8,1             | 2,7             |
| Ячмень                        | 6,7             | 6,6             | 2,5             |
| Кукуруза                      | 9,0             | 9,1             | 5,2             |
| Рапс                          | 3,6             | 4,2             | 1,7             |
| Сах. свекла<br><b>Овощные</b> | 79<br><b>48</b> | 62<br><b>41</b> | 46<br><b>24</b> |

Источник: Департамент статистики FAO UNESCO



### Сравнение качества почв России и Самарской области

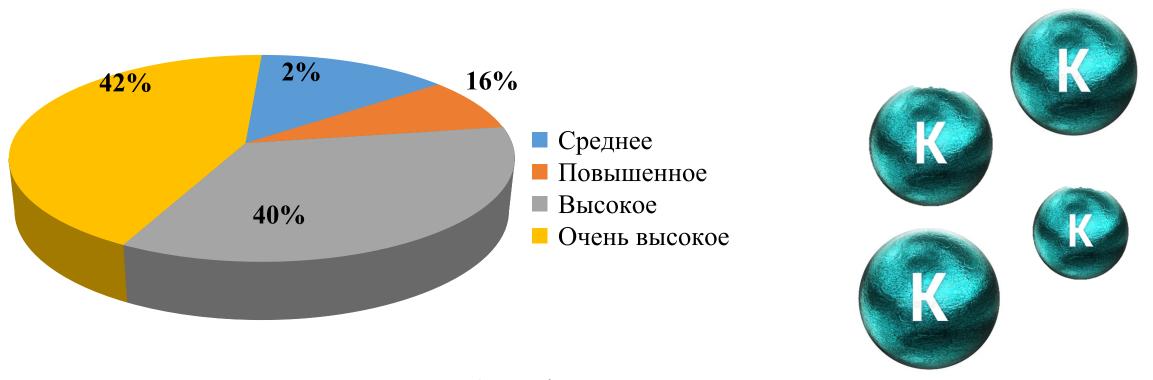
|    | земли России<br>илн.га), % | Пахотные земли Самарской области (2,8 млн.га), % |  |  |  |
|----|----------------------------|--------------------------------------------------|--|--|--|
| 40 | С низким<br>органичес      | 43                                               |  |  |  |
| 35 | С высокой кисл             | 0,1                                              |  |  |  |
| 22 | С низким сод               | 14,1                                             |  |  |  |
| 10 | С низким со                | 1,1                                              |  |  |  |
| 15 | Засоленны                  | 0,2                                              |  |  |  |
| 85 | Необе<br>микроэ            | 83                                               |  |  |  |




## Зависимость усвоения основных элементов от уровня рН почвы

|   | Уровень рН | В процентах (%) |        |       |  |  |  |  |
|---|------------|-----------------|--------|-------|--|--|--|--|
|   |            | Азот            | Фосфор | Калий |  |  |  |  |
|   | 4,5        | 30              | 23     | 33    |  |  |  |  |
|   | 5,0        | 43              | 34     | 53    |  |  |  |  |
| 4 | 5,5        | 77              | 48     | 63    |  |  |  |  |
| × | 6,0        | 89              | 52     | 77    |  |  |  |  |
|   | 6,5        | 100             | 95     | 100   |  |  |  |  |
|   | 7,0        | 100             | 100    | 100   |  |  |  |  |
|   | 7,5        | 100             | 70     | 75    |  |  |  |  |
| + | 8,0        | 100             | 30     | 45    |  |  |  |  |
| 9 | 8,5        | 78              | 20     | 30    |  |  |  |  |
|   | 9,0        | 50              | 5      | 10    |  |  |  |  |

<sup>\*</sup> по данным компании "Тімак Агро"


# Содержание подвижного фосфора в пахотных почвах Самарской области

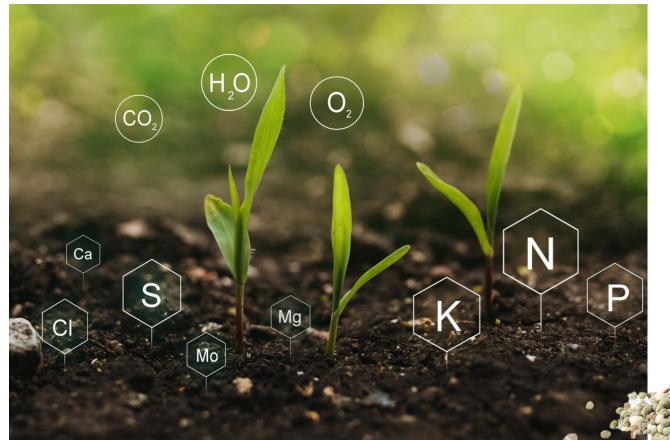




## Содержание обменного калия в пахотных почвах Самарской области

По содержанию калия почвы Самарской области характеризуются как высоко обеспеченные

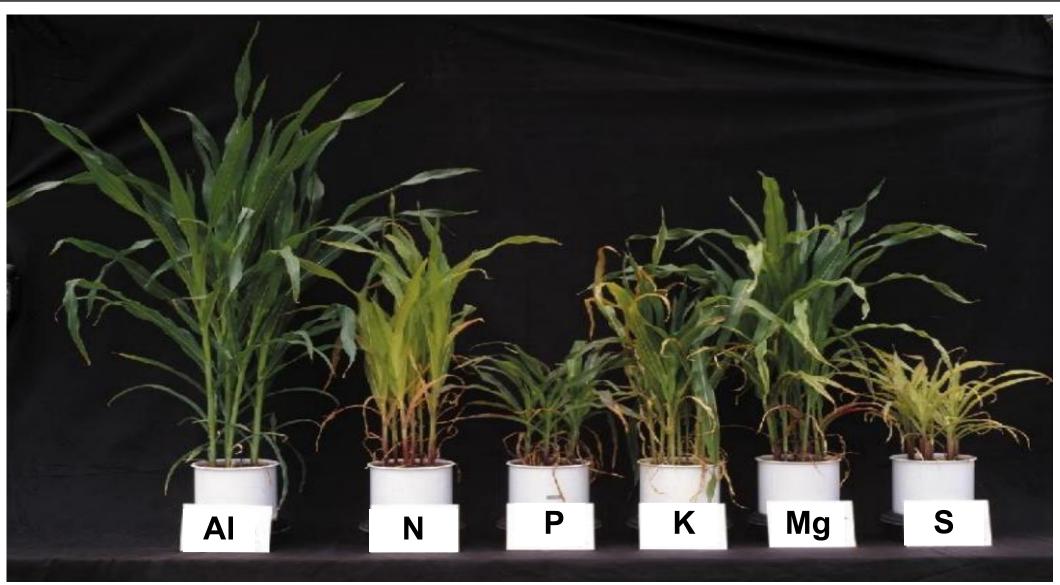



Средне взвешенное значение, 138,9 мг/кг почвы

### Выбор правильного вида и формы начинается с ответа на вопрос:

### Какие именно элементы питания необходимы?

Элементы лимитирующие урожайность могут быть определены по результатам агрохимического анализа почв, окраске листьев, анализу растений по фазам вегетации.





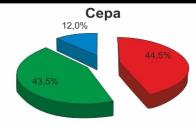

### Влияние элементов питания на рост и развитие растений

- Величина и качество урожая (N ; $P_2O_5$ ;  $K_2O$ , S);
- Устойчивость к стрессам (CaCO<sub>3</sub>; P<sub>2</sub>O<sub>5</sub> K<sub>2</sub>O);
- Процесс фотосинтеза и образования хлорофилла Mg (Mn, Zn, Fe, Cu, Mo);
- Процесс связывания свободного азота (Mo, B, Mn, Fe);
- Преобразование азота и фосфора в растении (B, Zn, Cu, Mn, Mo);
- Синтез белков и витаминов C, B, P (Zn, Mo, Fe, Mn);
- Преобразование углеводородов (В);
- Уменьшение нитратов (Fe, MgO, Ti, Zn,Cu);
- Развитие клубеньков у бобовых (Си,В, Мо).

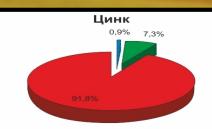
## Нехватка любого из элементов ведет к значительной потере урожая!






# Распределение площади пашни по степени обеспеченности подвижными формами микроэлементов и серой в Самарской области




Марганец оказывает прямое действие на рост и развитие растений, на их химический состав. Принимает участие в процессах фотосинтеза, дыхания, в азотном и нуклеиновом обменах. Недостаток марганца в почве сдерживает рост и развитие растений.

# **Медь**29,5% 67,0%

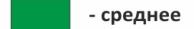
Медь повышает устойчивость растений к полеганию, способствует увеличению засухо-, морозо- и жароустойчивости растений. При дефиците меди задерживается рост растений, цветение, проявляется хлороз и увядание, падает продуктивность, не развивается колос у зерновых культур. У плодовых культур при недостатке меди появляется суховершинность.



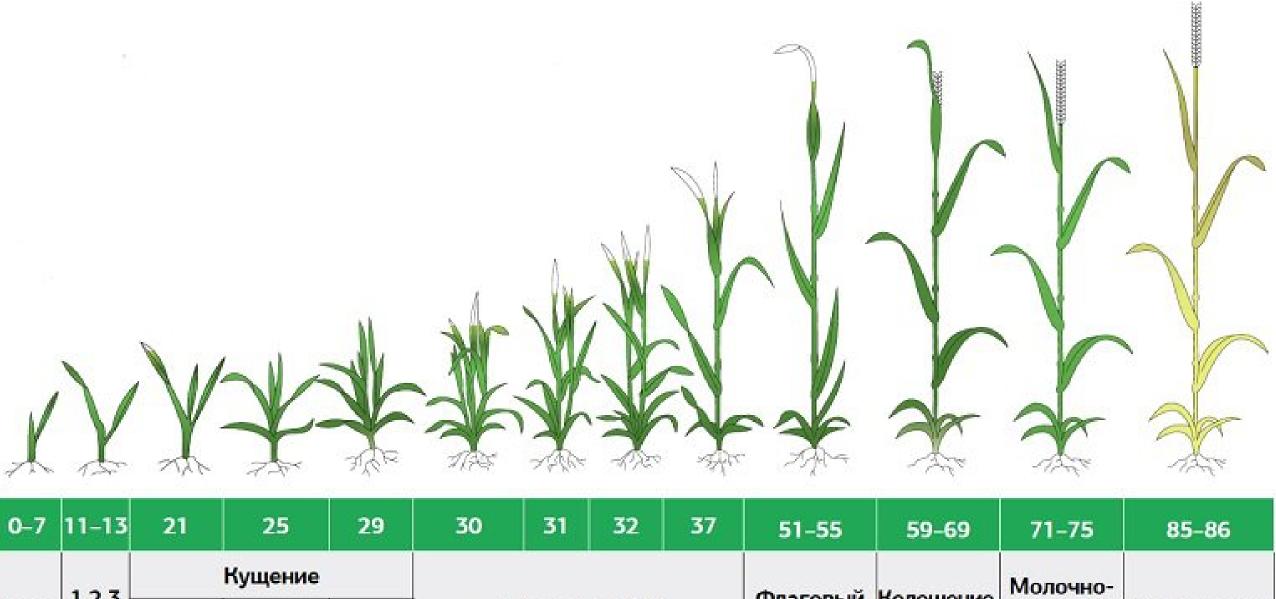
Сера относится к труднореутилизируемым элементам в растениях. Поэтому её недостаток, в первую очередь, проявляется на молодых листьях и точках роста. При недостатке серы образуются мелкие, со светлой желтоватой окраской листья на вытянутых стеблях, ухудшаются рост и развитие растений, значительно снижается величина и качество урожая всех сельскохозяйственных культур. Наибольшую потребность в этом элементе питания испытывают бобовые культуры, подсолнечник, корнеплоды и капуста.



Цинк повышает жаро- и морозоустойчивость растений, при его недостатке в почве замедляется превращение неорганических фосфатов в органические соединения, усиливает процесс оплодотворения и развития зародыша. Он способствует усилению прочности связи хлорофилла с белком, предохраняя его от преждевременного распада.


Признаком недостатка цинка является также формирование на концах ветвей плодовых деревьев побегов с укороченными междоузлиями и мелкими листьями (розеточность). Из всех тяжелых металлов цинк наиболее подвижный элемент и хорошо усваивается растениями.




Кобальт в растениях концентрируется в генеративных органах, в пыльце и в клубеньках бобовых культур, положительно действует на размножение клубеньковых бактерий, способствует накоплению витамина В12 у бобовых культур, гороха, лука, репы. Под действием кобальта улучшается диетическая ценность продукции, в результате увеличения его содержания в растениях возрастает содержание сахара в корнеплодах сахарной свёклы, увеличивается количество крахмала в клубнях картофеля, а также содержание аскорбиновой кислоты и белка в зерне кукурузы. От недостатка в кормах кобальта страдает курпный рогатый скот.











| The Control of | MARKET AND     | 1000                             | No.      | Street, and | and the same of th | Charles . | Sheire     | Charles (A) | 31-33          | 35-05                | / 1-/-2    | 03-00 |
|----------------|----------------|----------------------------------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-------------|----------------|----------------------|------------|-------|
| Посев          | 1,2,3<br>листа | Кущение                          |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Флагорый  | Колошение, | Молочно-    |                |                      |            |       |
|                |                | начало                           | середина | конец       | Выход в трубку                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |            | лист        | цветение       | восковая<br>спелость | Созревание |       |
|                |                | Потребность в N, P, K, Ca, S, Cu |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            | П           | отребность в N |                      |            |       |

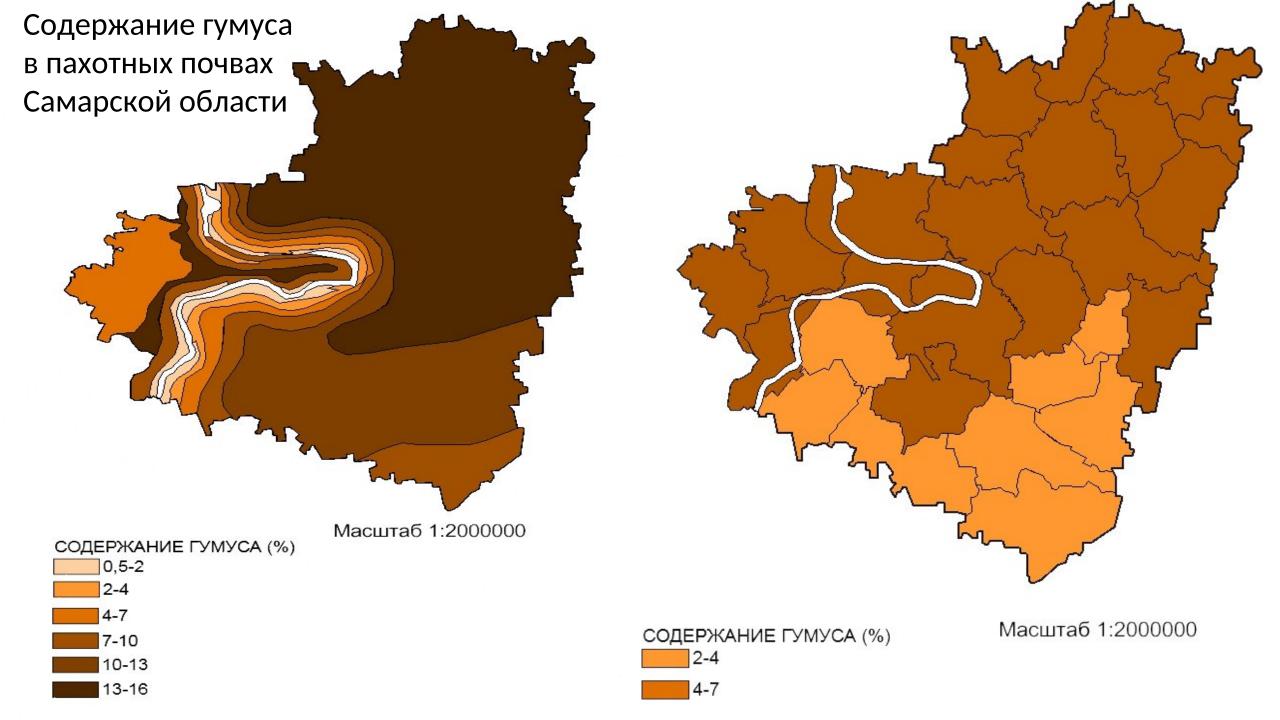
## Оптимизация минерального питания через

биологизацию

Что такое биологизация?

Создание в почве биологических, физических, химических условий для получения запланированных урожаев.

Источники для биологического земледелия:


- внесение органических удобрений: навоз, компост от 10 до 100 т/га;
- посевы сидеральных культур с урожаем 150-250 ц/га (донник, горчица белая, редька масличная, люпин);
- возделывание в севообороте бобовых и злаковых культур (горох, вика, клевер, люцерна, кукуруза на силос);
- > запашка остатков соломы с 30 кг аммиачной



## Оценка влияния агротехнологий на депонирование углерода в агрофитоценозах в условиях лесостепной зоны Среднего Поволжья

Одной И3 угроз ключевых продовольственной и экологической безопасности, не только в России, но и в мире в целом, является почвенноуглеродный кризис. Аграрные карбоновые полигоны - эффективные научно-практические комплексы разработки и испытаний технологий природоохранного ресурсосберегающего земледелия, а также контроля баланса активных климатических газов природных экосистемах.







## Разработка технологий выращивания посадочного материала для полезащитных лесных полос

Одной из основных создания защитных насаждений на территории Самарской области является дефицит посадочного материала, это касается и древесных пород используемых в озеленении населенных пунктов. Сложившаяся ситуация во многом обусловлено несовершенством существующих технологий выращивания сеянцев и саженцев в питомниках, не позволяющих в течение короткого временного периода производить необходимое количество стандартных сеянцев и саженцев.

- 1. Для получения стандартных сеянцев каштана конского обыкновенного к концу первого года жизни на уровне 92%, предлагается в лесных питомниках на черноземных почвах, вносить полное минеральное удобрение в норме  $N_{60}$   $P_{60}$   $K_{60}$ .
- 2. С целью максимально эффективного использования элементов минерального питания удобрений и обеспечения выхода посадочного материала на уровне 97%, удобрения целесообразно применять дробно по схеме  $N_{30}P_{60}$   $K_{60}$  под вспашку, в поровом поле,  $N_{30}$  весной и дополнительно для подкормки использовать препарат ИСПОЛИН





## Обследование почв тестового полигона Орловка (ООО "Орловка" - АИЦ, Похвистневский район Самарской области)

Влияние нулевой обработки почвы на секвестрацию в ней органического углерода, в целом, является положительным, но для достижения положительного эффекта требуется продуманный, научно обоснованный подход, учитывающий погодные условия, исходные свойства почв и почвенного покрова, возможности применение биологических методов повышения качества почв на каждом конкретном объекте, на котором планируется внедрять технологии нулевой обработки или ПРЗ.



Для моделирования динамики температуры и влажности почвы, роста растений, изменения в содержание органического вещества почв, микробного углерода, минеральных форм азота ( $NH_4^+$ ,  $NO_3^-$ ), эмиссии  $CO_2$ .  $N_2O$ ,  $NH_3$  и  $CH_4$  лучше использовать модель DNDC.





## Агроэкологическая оценка эффективности Фосфогипса производства Балаковского филиала АО «Апатит», как комплексного минерального удобрения и химического мелиоранта на посевах сельскохозяйственных культур в различных почвенно-

#### климатических зонах

(на территории Самарской области)»

Современный этап развития отечественной аграрной сферы требует агроэкологической оценки эффективности фосфогипса в конкретных почвенно-климатических зонах. Так, в южной агроэкологической зоне Самарской области в условиях орошения для восстановления баланса кальция, обогащения фосфором, снижения последствий ветровой эрозии почв может быть использован фосфогипс Балаковского филиала АО «Апатит». Его запасы в отвалах предприятия огромны и превышают 40 млн. тонн.

Но, научные исследования по использованию фосфогипса в качестве мелиоранта в условиях Самарской области практически не проводились. В результате нет конкретных рекомендаций по его применению под различные сельскохозяйственные культуры. В связи с этим все исследования по данной проблеме является актуальными и имеют большую практическую значимость.





### Исследование агроэкологической эффективности гипсовой и доломитовой муки в полевых условиях на посевах сельскохозяйственных культур

В представленном проекте впервые в условиях южной агроклиматической зоны Самарской области на черноземах обыкновенных солонцеватых в качестве мелиорантов и удобрений были апробированы новые региональные гипсо- и доломитосодержащие продукты производства ЗАО «Самарский гипсовый комбинат» и установлена степень их влияния на продуктивность сельскохозяйственных растений.

По данным Министерства сельского хозяйства и продовольствия Самарской области в настоящее время в регионе требуют проведения мелиоративных работ, путем гипсования более 180 тыс. га солонцеватых земель, кроме этого имеется около 10 тыс. га нарушенных земель в результате нефтедобычи, прокладки трубопроводов, разлития технических соленых вод и т.д. При систематическом поливе дождеванием происходит вымывание кальция из пахотного горизонта почвы, в результате она распыляется и уносится ветром и водой. Эта проблема в последние годы значительно обострилась и требует принятия незамедлительных мер по сохранению почвенного плодородия в орошаемом земледелии.





## Исследование агроэкологической эффективности комплексных гранулированных органоминеральных удобрений на основе навоза КРС в полевых условиях на посевах сельскохозяйственных культур

В основе исследований агроэкологическая оценка эффективности комплексных органоминеральных удобрений при внесении под посевы ярового ячменя на черноземе обыкновенном и под посевы нута на засоленных почвах в центральной агроэкологической зоне Самарской области. В ходе проведения исследований выявлено влияние различных норм минеральных (МУ) и органоминеральных удобрений (ОМУ) на посевах ярового ячменя и нута на полевую всхожесть и сохранность растений, особенности роста и развития растений, формирование элементов структуры урожая и продуктивность посевов.

Внесение МУ: повышает кислотность на 0,1-0,4 ед pH, содержание органического вещества возрастает на 1,2%, количество фосфора увеличивается на 21,9 мг/кг (12,5%), серы на 12,5 мг/кг, (137%) нитратов на 0,2 мг/кг (22%), аммония на 2,9 или на 116%; внесение ОМУ: повышает кислотность 0,2 - 0,6 ед pH, при этом содержание органического вещества возрастает на 0,9%, количество фосфора увеличивается на 14,6 мг/кг (8,35%), серы на 5,2 мг/кг, (51,14%), содержание нитратов в среднем не меняется, а концентрация обменного аммония и азота аммония возрастает на 64 и 65% соответственно.







Контакты Международные связи

Вы здесь: Самарский ГАУ \ Новости \ Агрономический факультет проводит практические за

Агрономический факультет проводит практические занятия по основам агрономии со школьниками

#### Подробности

Создано 12.12.2024 17:49

Просмотров: 720





С целью оказания научно-методической помощи преподавателям средних













